BACKPAPER EXAMINATION M. MATH II YEAR FOURIER ANALYSIS I SEMSTER, 2014-15

The seven questions below carry a total of 110 marks. Answer as many questions as you can.

The maximum you can score is 100. Time limit is 3 hours.

1. Let $f = I_{(-1,1)}$ considered as an element of $L^1(\mathbb{R})$ and g = f * f. Show that the Hilbert transform Hg is given by $Hg(x) = c \int_{0}^{\infty} \sin(tx) (\frac{\sin t}{t})^2 dt$ where cis an absolute constant. [20]

2. Let M be a closed subspace of $L^1(\mathbb{R})$ considered as a ring under convolution as multiplication. Show that M is an ideal if and only if $f_a \in M$ whenever $f \in M$ and $a \in \mathbb{R}$. [20]

3. If
$$f, g \in L^1(\mathbb{R}), ||g||_1 < 1$$
 and $f = f * g$ show that $f = 0$ a.e. [10]

4. Compute explicitly the Fourier transforms of $\frac{\sin x}{x}$ and $\left(\frac{\sin x}{x}\right)^2$. [20]

5. Prove that if $f \in L^1(\mathbb{R})$ and f, f both have compact support then f = 0a.e. [15]

6. Let $X = L^2(\mathbb{R})$ and M be the closed subspace of X generated by $\{I_{A_n} : n \geq 1\}$ where $\{A_n : n \geq 1\}$ is a partition of \mathbb{R} by Lebesgue measurable sets. Write a formula for the projection of an element f of X on M and jusitfy your formula. [10]

7. Prove that $\{f \in L^1(\mathbb{R}) : f \text{ has compact support}\}$ is dense in $L^2(\mathbb{R})$. [15]